14. Convex programming

- Convex sets and functions
- Convex programs
- Hierarchy of complexity
- Example: geometric programming

Convex sets

A set of points $C \subseteq \mathbb{R}^{n}$ is convex if for all points $x, y \in C$ and any real number $0 \leq \alpha \leq 1$, we have $\alpha x+(1-\alpha) y \in C$.

- all points in C can see each other.
- can be closed or open (includes boundary or not), or some combination where only some boundary points are included.
- can be bounded or unbounded.

Convex sets

Intersections preserve convexity:
 If \mathcal{I} is a collection of convex sets $\left\{C_{i}\right\}_{i \in \mathcal{I}}$, then the intersection $S=\bigcap_{i \in \mathcal{I}} C_{i}$ is convex.

proof: Suppose $x, y \in S$ and $0 \leq \alpha \leq 1$. By definition, $x, y \in C_{i}$ for each $i \in \mathcal{I}$. By the convexity of C_{i}, we must have $\alpha x+(1-\alpha) y \in C_{i}$ as well. Therefore $\alpha x+(1-\alpha) y \in S$, and we are done.
note: The union of convex sets $C_{1} \cup C_{2}$ is need not be convex!

Convex sets

Constraints can be characterized by sets!

- If we define $C_{1}:=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ then:

$$
A x \leq b \quad \Longleftrightarrow \quad x \in C_{1}
$$

- If we define $C_{2}:=\left\{x \in \mathbb{R}^{n} \mid F x=g\right\}$ then:

$$
A x \leq b \text { and } F x=g \quad \Longleftrightarrow \quad x \in C_{1} \cap C_{2}
$$

Convex sets

Example: SOCP
Let $C:=\left\{x \in \mathbb{R}^{n} \mid\|A x+b\| \leq c^{\top} x+d\right\}$. To prove C is convex, suppose $x, y \in C$ and let $z:=\alpha x+(1-\alpha) y$. Then:

$$
\begin{aligned}
\|A z+b\| & =\|A(\alpha x+(1-\alpha) y)+b\| \\
& =\|\alpha(A x+b)+(1-\alpha)(A y+b)\| \\
& \leq \alpha\|A x+b\|+(1-\alpha)\|A y+b\| \\
& \leq \alpha\left(c^{\top} x+d\right)+(1-\alpha)\left(c^{\top} y+d\right) \\
& =c^{\top} z+d
\end{aligned}
$$

Therefore, $\|A z+b\| \leq c^{\top} z+d$, i.e. C is convex.

Convex sets

Example: spectrahedron

Let $C:=\left\{x \in \mathbb{R}^{3} \left\lvert\,\left[\begin{array}{ccc}1 & x_{1} & x_{2} \\ x_{1} & 1 & x_{3} \\ x_{2} & x_{3} & 1\end{array}\right] \succeq 0\right.\right\}$. To prove C is
convex, consider the set $S:=\left\{X \in \mathbb{R}^{3 \times 3} \mid X=X^{\top} \succeq 0\right\}$
Note that S is the PSD cone. It is convex because if we define $Z:=\alpha X+(1-\alpha) Y$ where $X, Y \in S$ and $0 \leq \alpha \leq 1$, then

$$
\begin{aligned}
w^{\top} Z w & =w^{\top}(\alpha X+(1-\alpha) Y) w \\
& =\alpha w^{\top} X w+(1-\alpha) w^{\top} Y w
\end{aligned}
$$

So if $X \succeq 0$ and $Y \succeq 0$, then $Z \succeq 0$. So S is convex. Now, C is convex because it's the intersection of two convex sets: the PSD cone S and the affine space $\left\{X \in \mathbb{R}^{3 \times 3} \mid X_{i i}=1\right\}$.

Convex functions

- If $C \subseteq \mathbb{R}^{n}$, a function $f: C \rightarrow \mathbb{R}$ is convex if C is a convex set and for all $x, y \in C$ and $0 \leq \alpha \leq 1$, we have:

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)
$$

- f is concave if $-f$ is convex.

Convex and concave functions

Convex functions on \mathbb{R} :

- Affine: $a x+b$.
- Absolute value: $|x|$.
- Quadratic: $a x^{2}$ for any $a \geq 0$.
- Exponential: a^{x} for any $a>0$.
- Powers: x^{α} for $x>0, \alpha \geq 1$ or $\alpha \leq 0$.
- Negative entropy: $x \log x$ for $x>0$.

Concave functions on \mathbb{R} :

- Affine: $a x+b$.
- Quadratic: $a x^{2}$ for any $a \leq 0$.
- Powers: x^{α} for $x>0,0 \leq \alpha \leq 1$.
- Logarithm: $\log x$ for $x>0$.

Convex and concave functions

Convex functions on \mathbb{R}^{n} :

- Affine: $a^{\top} x+b$.
- Norms: $\|x\|_{2},\|x\|_{1},\|x\|_{\infty}$
- Quadratic form: $x^{\top} Q x$ for any $Q \succeq 0$

Building convex functions

1. Nonnegative weighted sum: If $f(x)$ and $g(x)$ are convex and $\alpha, \beta \geq 0$, then $\alpha f(x)+\beta g(x)$ is convex.
2. Composition with an affine function: If $f(x)$ is convex, so is $g(x):=f(A x+b)$
3. Pointwise maximum: If $f_{1}(x), \ldots, f_{k}(x)$ are convex, then $g(x):=\max \left\{f_{1}(x), \ldots, f_{k}(x)\right\}$ is convex.
proof: Let $z:=\alpha x+(1-\alpha) y$ as usual.

$$
\begin{aligned}
g(z) & =f(A z+b) \\
& =f(\alpha(A x+b)+(1-\alpha)(A y+b)) \\
& \leq \alpha f(A x+b)+(1-\alpha) f(A y+b) \\
& =\alpha g(x)+(1-\alpha) g(y)
\end{aligned}
$$

Convex functions vs sets

Level set: If f is a convex function, then the set of points satisfying $f(x) \leq a$ is a convex set.

- Converse is false: if all level sets of f are convex, it does not necessarily imply that f is a convex function!

Convex functions vs sets

Epigraph: $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function if and only if the set $\left\{(x, t) \in \mathbb{R}^{n+1} \mid f(x) \leq t\right\}$ is convex.

Convex programs

The standard form for a convex optimization problem:

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & f_{0}(x) \\
\text { subject to: } & f_{i}(x) \leq 0 \quad \text { for } i=1, \ldots, k \\
& A x=b \\
& x \in C
\end{aligned}
$$

- $f_{0}, f_{1}, \ldots, f_{k}$ are convex functions
- C is a convex set

Convex programs

- Can turn $f_{0}(x)$ into a linear constraint (use epigraph)
- Can characterize constraints using sets.

Minimalist form:

$$
\underset{x \in S}{\operatorname{minimize}} c^{\top} x
$$

- S is a convex set

Key properties and advantages

1. The set of optimal points x^{\star} is itself a convex set.

- Proof: If x^{\star} and y^{\star} are optimal, then we must have $f^{\star}=f_{0}\left(x^{\star}\right)=f_{0}\left(y^{\star}\right)$. Also, $f^{\star} \leq f_{0}(z)$ for any z. Choose $z:=\alpha x^{\star}+(1-\alpha) y^{\star}$ with $0 \leq \alpha \leq 1$. By convexity of f_{0}, $f^{\star} \leq f_{0}\left(\alpha x^{\star}+(1-\alpha) y^{\star}\right) \leq \alpha f_{0}\left(x^{\star}\right)+(1-\alpha) f_{0}\left(y^{\star}\right)=f^{\star}$. Therefore, $f_{0}(z)=f^{\star}$, i.e. z is also an optimal point.

2. If x is a locally optimal point, then it is globally optimal.

- Follows from the result above. A very powerful fact!

3. Upper an lower bounds available via duality (more later!)
4. Often numerically tractable (not always!)

Hierarchy of programs

From least general to most general model:

1. LP: linear cost and linear constraints
2. QP: convex quadratic cost and linear constraints
3. QCQP: convex quadratic cost and constraints
4. SOCP: linear cost, second order cone constraints
5. SDP: linear cost, semidefinite constraints
6. CVX: convex cost and constraints

Less general (simpler) models are typically preferable

Solving convex problems

Simpler models are usually more efficient to solve

Factors affecting solver speed:

- How difficult is it to verify that $x \in C$?
- How difficult is it to project onto C ?
- How difficult is it to evaluate $f(x)$?
- How difficult is it to compute $\nabla f(x)$?
- Can the solver take advantage of sparsity?

Example: geometric programming

The log-sum-exp function (shown left) is convex:

$$
f(x):=\log \left(\sum_{k=1}^{n} \exp x_{k}\right)
$$

It's a smoothed version of $\max \left\{x_{1}, \ldots, x_{k}\right\}$ (shown right)

Example: geometric programming

Suppose we have positive decision variables $x_{i}>0$, and constraints of the form (with each $c_{j}>0$ and $\alpha_{j k} \in \mathbb{R}$):

$$
\sum_{j=1} c_{j} x_{1}^{\alpha_{j 1}} x_{2}^{\alpha_{j 2}} \cdots x_{n}^{\alpha_{j n}} \leq 1
$$

Then by using the substitution $y_{i}:=\log \left(x_{i}\right)$, we have:

$$
\log \left(\sum_{j=1}^{n} \exp \left(a_{j 0}+a_{j 1} y_{1}+\cdots+a_{j n} y_{n}\right)\right) \leq 0
$$

(where $a_{j 0}:=\log c_{j}$). This is a \log-sum-exp function composed with an affine function (convex!)

Example: geometric programming

Example: We want to design a box of height h, width w, and depth d with maximum volume ($h w d$) subject to the limits:

- total wall area: $2(h w+h d) \leq A_{\text {wall }}$
- total floor area: $w d \leq A_{\text {flr }}$
- height-width aspect ratio: $\alpha \leq \frac{h}{w} \leq \beta$
- width-depth aspect ratio: $\gamma \leq \frac{d}{w} \leq \delta$

We can make some of the constraints linear, but not all of them. This appears to be a nonconvex optimization problem...

Example: geometric programming

Example: We want to design a box of height h, width w, and depth d with maximum volume ($h w d$) subject to the limits:

- total wall area: $2(h w+h d) \leq A_{\text {wall }}$
- total floor area: $w d \leq A_{\text {flr }}$
- height-width aspect ratio: $\alpha \leq \frac{h}{w} \leq \beta$
- width-depth aspect ratio: $\gamma \leq \frac{d}{w} \leq \delta$

$$
\operatorname{minimize} \quad h^{-1} w^{-1} d^{-1}
$$

subject to: $\quad \frac{2}{A_{\text {wall }}} h w+\frac{2}{A_{\text {wall }}} h d \leq 1, \quad \frac{1}{A_{\text {flr }}} w d \leq 1$

$$
\begin{array}{ll}
\alpha h^{-1} w \leq 1, & \frac{1}{\beta} h w^{-1} \leq 1 \\
\gamma w d^{-1} \leq 1, & \frac{1}{\delta} w^{-1} d \leq 1
\end{array}
$$

Example: geometric programming

$$
\begin{array}{rll}
\underset{h, w, d>0}{\operatorname{minimize}} & h^{-1} w^{-1} d^{-1} \\
\text { subject to: } & \frac{2}{A_{\text {wall }}} h w+\frac{2}{A_{\text {wall }}} h d \leq 1, & \frac{1}{A_{\text {fir }}} w d \leq 1 \\
& \alpha h^{-1} w \leq 1, & \frac{1}{\beta} h w^{-1} \leq 1 \\
& \gamma w d^{-1} \leq 1, & \frac{1}{\delta} w^{-1} d \leq 1
\end{array}
$$

- Define: $x:=\log h, y:=\log w$, and $z:=\log d$.
- Express the problem in terms of the new variables x, y, z. Note: h, w, d are positive but x, y, z are unconstrained.

Example: geometric programming

$\underset{x, y, z}{\operatorname{minimize}} \log \left(e^{-x-y-z}\right)$
subject to: $\log \left(e^{\log \left(2 / A_{\text {wall }}\right)+x+y}+e^{\log \left(2 / A_{\text {wall }}\right)+x+z}\right) \leq 0$

$$
\begin{array}{ll}
\log \left(e^{\log \left(1 / A_{\mathrm{flr}}\right)+y+z}\right) \leq 0 & \\
\log \left(e^{\log \alpha-x+y}\right) \leq 0, & \log \left(e^{-\log \beta+x-y}\right) \leq 0 \\
\log \left(e^{\log \gamma+y-z}\right) \leq 0, & \log \left(e^{-\log \delta-y+z}\right) \leq 0
\end{array}
$$

- this is a convex model, but it can be simplified!
- most of the constraints are actually linear.

Example: geometric programming

$$
\underset{x, y, z}{\operatorname{minimize}}-x-y-z
$$

subject to: $\log \left(e^{\log \left(2 / A_{\text {wall }}\right)+x+y}+e^{\log \left(2 / A_{\text {wall }}\right)+x+z}\right) \leq 0$

$$
\begin{aligned}
& y+z \leq \log A_{\mathrm{flr}} \\
& \log \alpha \leq x-y \leq \log \beta \\
& \log \gamma \leq z-y \leq \log \delta
\end{aligned}
$$

- This is a convex optimization problem.

