14. Convex programming

- Convex sets and functions
- Convex programs
- Hierarchy of complexity
- Example: geometric programming

A set of points $C \subseteq \mathbb{R}^n$ is **convex** if for all points $x, y \in C$ and any real number $0 \le \alpha \le 1$, we have $\alpha x + (1 - \alpha)y \in C$.

- all points in C can **see** each other.
- can be closed or open (includes boundary or not), or some combination where only some boundary points are included.
- can be bounded or unbounded.

Intersections preserve convexity:

If \mathcal{I} is a collection of convex sets $\{C_i\}_{i\in\mathcal{I}}$, then the intersection $S=\bigcap_{i\in\mathcal{I}}C_i$ is convex.

proof: Suppose $x, y \in S$ and $0 \le \alpha \le 1$. By definition, $x, y \in C_i$ for each $i \in \mathcal{I}$. By the convexity of C_i , we must have $\alpha x + (1 - \alpha)y \in C_i$ as well. Therefore $\alpha x + (1 - \alpha)y \in S$, and we are done.

note: The union of convex sets $C_1 \cup C_2$ is need not be convex!

Constraints can be characterized by sets!

• If we define $C_1 := \{x \in \mathbb{R}^n \mid Ax \leq b\}$ then:

$$Ax \leq b \iff x \in C_1$$

• If we define $C_2 := \{x \in \mathbb{R}^n \mid Fx = g\}$ then:

$$Ax \leq b \text{ and } Fx = g \iff x \in C_1 \cap C_2$$

Example: SOCP

Let $C := \{x \in \mathbb{R}^n \mid ||Ax + b|| \le c^\mathsf{T} x + d\}$. To prove C is convex, suppose $x, y \in C$ and let $z := \alpha x + (1 - \alpha)y$. Then:

$$||Az + b|| = ||A(\alpha x + (1 - \alpha)y) + b||$$

$$= ||\alpha(Ax + b) + (1 - \alpha)(Ay + b)||$$

$$\leq \alpha ||Ax + b|| + (1 - \alpha)||Ay + b||$$

$$\leq \alpha(c^{\mathsf{T}}x + d) + (1 - \alpha)(c^{\mathsf{T}}y + d)$$

$$= c^{\mathsf{T}}z + d$$

Therefore, $||Az + b|| \le c^{\mathsf{T}}z + d$, i.e. C is convex.

Example: spectrahedron

Let
$$C:=\left\{x\in\mathbb{R}^3\;\middle|\; egin{bmatrix}1&x_1&x_2\\x_1&1&x_3\\x_2&x_3&1\end{bmatrix}\succeq 0\right\}$$
. To prove C is convex, consider the set $S:=\left\{X\in\mathbb{R}^{3\times3}\;\middle|\; X=X^{\mathsf{T}}\succeq 0\right\}$ Note that S is the PSD cone. It is convex because if we define $Z:=\alpha X+(1-\alpha)Y$ where $X,Y\in S$ and $0\leq\alpha\leq 1$, then

$$w^{\mathsf{T}} Z w = w^{\mathsf{T}} (\alpha X + (1 - \alpha) Y) w$$
$$= \alpha w^{\mathsf{T}} X w + (1 - \alpha) w^{\mathsf{T}} Y w$$

So if $X \succeq 0$ and $Y \succeq 0$, then $Z \succeq 0$. So S is convex. Now, C is convex because it's the intersection of two convex sets: the PSD cone S and the affine space $\{X \in \mathbb{R}^{3\times 3} \mid X_{ii} = 1\}$.

Convex functions

• If $C \subseteq \mathbb{R}^n$, a function $f: C \to \mathbb{R}$ is **convex** if C is a convex set and for all $x, y \in C$ and $0 \le \alpha \le 1$, we have:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

• f is **concave** if -f is convex.

Convex and concave functions

Convex functions on \mathbb{R} :

- Affine: ax + b.
- Absolute value: |x|.
- Quadratic: ax^2 for any $a \ge 0$.
- Exponential: a^x for any a > 0.
- Powers: x^{α} for x > 0, $\alpha \ge 1$ or $\alpha \le 0$.
- Negative entropy: $x \log x$ for x > 0.

Concave functions on \mathbb{R} :

- Affine: ax + b.
- Quadratic: ax^2 for any $a \le 0$.
- Powers: x^{α} for x > 0, $0 \le \alpha \le 1$.
- Logarithm: $\log x$ for x > 0.

Convex and concave functions

Convex functions on \mathbb{R}^n :

- Affine: $a^{\mathsf{T}}x + b$.
- Norms: $||x||_2$, $||x||_1$, $||x||_{\infty}$
- Quadratic form: $x^T Q x$ for any $Q \succeq 0$

Building convex functions

- **1.** Nonnegative weighted sum: If f(x) and g(x) are convex and $\alpha, \beta \geq 0$, then $\alpha f(x) + \beta g(x)$ is convex.
- **2.** Composition with an affine function: If f(x) is convex, so is g(x) := f(Ax + b)
- **3.** Pointwise maximum: If $f_1(x), \ldots, f_k(x)$ are convex, then $g(x) := \max \{f_1(x), \ldots, f_k(x)\}$ is convex.

proof: Let
$$z := \alpha x + (1 - \alpha)y$$
 as usual.
$$g(z) = f(Az + b)$$
$$= f(\alpha(Ax + b) + (1 - \alpha)(Ay + b))$$
$$\leq \alpha f(Ax + b) + (1 - \alpha)f(Ay + b)$$
$$= \alpha g(x) + (1 - \alpha)g(y)$$

Convex functions vs sets

Level set: If f is a convex function, then the set of points satisfying $f(x) \le a$ is a convex set.

 Converse is false: if all level sets of f are convex, it does not necessarily imply that f is a convex function!

Convex functions vs sets

Epigraph: $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function **if and only if** the set $\{(x,t) \in \mathbb{R}^{n+1} \mid f(x) \leq t\}$ is convex.

Convex programs

The standard form for a convex optimization problem:

minimize
$$f_0(x)$$

subject to: $f_i(x) \le 0$ for $i = 1, ..., k$
 $Ax = b$
 $x \in C$

- f_0, f_1, \ldots, f_k are convex functions
- C is a convex set

Convex programs

- Can turn $f_0(x)$ into a linear constraint (use epigraph)
- Can characterize constraints using sets.

Minimalist form:

$$\underset{x \in S}{\mathsf{minimize}} \quad c^{\mathsf{T}} x$$

• S is a convex set

Key properties and advantages

- **1.** The set of optimal points x^* is itself a convex set.
 - ▶ **Proof**: If x^* and y^* are optimal, then we must have $f^* = f_0(x^*) = f_0(y^*)$. Also, $f^* \le f_0(z)$ for any z. Choose $z := \alpha x^* + (1 \alpha)y^*$ with $0 \le \alpha \le 1$. By convexity of f_0 , $f^* \le f_0(\alpha x^* + (1 \alpha)y^*) \le \alpha f_0(x^*) + (1 \alpha)f_0(y^*) = f^*$. Therefore, $f_0(z) = f^*$, i.e. z is also an optimal point.
- **2.** If x is a locally optimal point, then it is globally optimal.
 - ▶ Follows from the result above. A very powerful fact!
- 3. Upper an lower bounds available via duality (more later!)
- 4. Often numerically tractable (not always!)

Hierarchy of programs

From least general to most general model:

- 1. LP: linear cost and linear constraints
- 2. QP: convex quadratic cost and linear constraints
- 3. QCQP: convex quadratic cost and constraints
- **4.** SOCP: linear cost, second order cone constraints
- **5.** SDP: linear cost, semidefinite constraints
- 6. CVX: convex cost and constraints

Less general (simpler) models are typically preferable

Solving convex problems

Simpler models are usually more efficient to solve

Factors affecting solver speed:

- How difficult is it to verify that $x \in C$?
- How difficult is it to project onto C?
- How difficult is it to evaluate f(x)?
- How difficult is it to compute $\nabla f(x)$?
- Can the solver take advantage of sparsity?

The **log-sum-exp** function (shown left) is convex:

$$f(x) := \log \left(\sum_{k=1}^{n} \exp x_k \right)$$

It's a smoothed version of $\max\{x_1,\ldots,x_k\}$ (shown right)

Suppose we have positive decision variables $x_i > 0$, and constraints of the form (with each $c_i > 0$ and $\alpha_{jk} \in \mathbb{R}$):

$$\sum_{j=1} c_j x_1^{\alpha_{j1}} x_2^{\alpha_{j2}} \cdots x_n^{\alpha_{jn}} \le 1$$

Then by using the substitution $y_i := \log(x_i)$, we have:

$$\log\left(\sum_{j=1}^n \exp\left(a_{j0} + a_{j1}y_1 + \cdots + a_{jn}y_n\right)\right) \le 0$$

(where $a_{j0} := \log c_j$). This is a log-sum-exp function composed with an affine function (convex!)

Example: We want to design a box of height h, width w, and depth d with maximum volume (hwd) subject to the limits:

- total wall area: $2(hw + hd) \le A_{\text{wall}}$
- total floor area: $wd \le A_{flr}$
- height-width aspect ratio: $\alpha \leq \frac{h}{w} \leq \beta$
- width-depth aspect ratio: $\gamma \leq \frac{d}{w} \leq \delta$

We can make some of the constraints linear, but not all of them. This appears to be a nonconvex optimization problem...

Example: We want to design a box of height h, width w, and depth d with maximum volume (hwd) subject to the limits:

- total wall area: $2(hw + hd) \le A_{\text{wall}}$
- total floor area: $wd \leq A_{flr}$
- height-width aspect ratio: $\alpha \leq \frac{h}{w} \leq \beta$
- width-depth aspect ratio: $\gamma \leq \frac{d}{w} \leq \delta$

$$\begin{array}{ll} \underset{h,w,d>0}{\text{minimize}} & h^{-1}w^{-1}d^{-1} \\ \text{subject to:} & \frac{2}{A_{\text{wall}}}hw + \frac{2}{A_{\text{wall}}}hd \leq 1, & \frac{1}{A_{\text{fir}}}wd \leq 1 \\ & \alpha h^{-1}w \leq 1, & \frac{1}{\beta}hw^{-1} \leq 1 \\ & \gamma wd^{-1} \leq 1, & \frac{1}{\delta}w^{-1}d \leq 1 \end{array}$$

$$\begin{array}{ll} \underset{h,w,d>0}{\text{minimize}} & h^{-1}w^{-1}d^{-1} \\ \text{subject to:} & \frac{2}{A_{\text{wall}}}hw + \frac{2}{A_{\text{wall}}}hd \leq 1, & \frac{1}{A_{\text{fir}}}wd \leq 1 \\ & \alpha h^{-1}w \leq 1, & \frac{1}{\beta}hw^{-1} \leq 1 \\ & \gamma wd^{-1} \leq 1, & \frac{1}{\delta}w^{-1}d \leq 1 \end{array}$$

- Define: $x := \log h$, $y := \log w$, and $z := \log d$.
- Express the problem in terms of the new variables x, y, z. Note: h, w, d are positive but x, y, z are unconstrained.

- this is a convex model, but it can be simplified!
- most of the constraints are actually linear.

This is a convex optimization problem.