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Convex sets

A set of points C C R" is convex if for all points x,y € C
and any real number 0 < o < 1, we have ax+ (1 —a)y € C.

e all points in C can see each other.

e can be closed or open (includes
boundary or not), or some
combination where only some
boundary points are included.

e can be bounded or unbounded.
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Convex sets

Intersections preserve convexity:
If Z is a collection of convex sets {C;};cz, then
the intersection S = ;.7 G is convex.

proof: Suppose x,y € S and 0 < o < 1. By definition,

x,y € C; for each i € Z. By the convexity of C;, we must have
ax + (1 —a)y € G as well. Therefore ax + (1 —a)y € S,
and we are done.

note: The union of convex sets C; U G is need not be convex!
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Convex sets

Constraints can be characterized by sets!

o If we define G := {x € R" | Ax < b} then:
Ax<b <+— xe(G
o If we define G, := {x € R" | Fx = g} then:

Ax<band Fx=g <<= xeGnNG
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Convex sets

Example: SOCP

Let C:={x €R" | [|Ax+ b|| < c"x+d}. To prove Cis
convex, suppose x,y € C and let z := ax + (1 — «)y. Then:

|Az + bl = [|A(ax + (1 — a)y) + b]|

= ||a(Ax + b) + (1 — a)(Ay + b)||
al|Ax + b|| + (1 — a)||Ay + b|
alc"™x+d)+(1—a)(c'y +d)
c'z+d

<
<

Therefore, ||Az + b|| < c"z+d, i.e. C is convex.
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Convex sets
Example: spectrahedron

1 3 x
X1 1 X3
X2 X3 1
convex, consider the set S := {X € R¥»*| X = X7 = 0}
Note that S is the PSD cone. It is convex because if we define
Z:=aX+(l—a)Y where X, Y € Sand 0 < a <1, then

Let C := {xE]R3

- 0}. To prove C is

w'Zw=w' (aX+(1—a)Y)w
= aw'Xw + (1 — a)w' Yw

Soif X>=0and Y =0, then Z>0. So S is convex. Now, C
is convex because it's the intersection of two convex sets: the
PSD cone S and the affine space {X € R*3 | X; = 1}.
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Convex functions

e If C CR" afunction f: C — Ris convex if C is a
convex set and for all x,y € C and 0 < o < 1, we have:

flax+ (1 —a)y) < af(x)+ (1 — a)f(y)

e f is concave if —f is convex.

£(x)
3l
ol y
1 X
+ X
-1 1 2 3 4
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Convex and concave functions
Convex functions on R:

o Affine: ax + b.
Absolute value: |x|.

Quadratic: ax? for any a > 0.

e Exponential: a* for any a > 0.

e Powers: x®for x>0, a>1ora<0.
e Negative entropy: xlog x for x > 0.

Concave functions on R:

o Affine: ax + b.

e Quadratic: ax? for any a < 0.

e Powers: x® forx >0, 0<a<1.
e Logarithm: log x for x > 0.
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Convex and concave functions

Convex functions on R":

e Affine: a'x + b.
e Norms: ||x||2, [|x]l1, [IX]]e

e Quadratic form: xTQx for any @ = 0
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Building convex functions

1. Nonnegative weighted sum: If f(x) and g(x) are convex
and a, > 0, then af(x) + Sg(x) is convex.

2. Composition with an affine function:
If f(x) is convex, so is g(x) := f(Ax + b)

3. Pointwise maximum: If fi(x), ..., fy(x) are convex, then
g(x) :=max{fi(x),..., f(x)} is convex.

proof: Let z := ax + (1 — )y as usual.
g(z) = f(Az+ b)
= f(a(Ax + b) + (1 — a)(Ay + b))
< af(Ax + b) + (1 — a)f(Ay + b)
=ag(x) + (1 - a)g(y)
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Convex functions vs sets

Level set: If f is a convex function, then the set
of points satisfying f(x) < a is a convex set.

e Converse is false: if all level sets of f are convex, it does
not necessarily imply that f is a convex function!

X20'51.0
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Convex functions vs sets

Epigraph: f : R” — R is a convex function if and only if
the set {(x,t) € R"™ | f(x) < t} is convex.

f(x) t

4 4

3 3

2 2

1 1
T a4 1 2 3 4 ”
plot of £(x) {(x,t) | f(x) <t}
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Convex programs

The standard form for a convex optimization problem:

e fy,f1,..., fx are convex functions

e C is a convex set
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Convex programs

e Can turn fo(x) into a linear constraint (use epigraph)

e Can characterize constraints using sets.
Minimalist form:

minimize c¢'x
x€ES

e S is a convex set
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Key properties and advantages

1. The set of optimal points x* is itself a convex set.

» Proof: If x* and y* are optimal, then we must have
* = fo(x*) = fo(y*). Also, f* < fy(z) for any z. Choose
z = ax* + (1 — a)y* with 0 < a < 1. By convexity of fy,
f* < folax* + (1 — a)y*) < afy(x*) + (1 — a)fo(y*) = F*.
Therefore, fy(z) = f*, i.e. z is also an optimal point.

2. If x is a locally optimal point, then it is globally optimal.

» Follows from the result above. A very powerful fact!
3. Upper an lower bounds available via duality (more later!)

4. Often numerically tractable (not always!)
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Hierarchy of programs

From least general to most general model:

. LP: linear cost and linear constraints
. QP: convex quadratic cost and linear constraints
. QCQP: convex quadratic cost and constraints

1
2
3
4.
5
6

SOCP: linear cost, second order cone constraints

. SDP: linear cost, semidefinite constraints

. CVX: convex cost and constraints

Less general (simpler) models are typically preferable
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Solving convex problems

Simpler models are usually more efficient to solve

Factors affecting solver speed:

e How difficult is it to verify that x € C 7
How difficult is it to project onto C ?
How difficult is it to evaluate f(x) ?
How difficult is it to compute Vf(x) ?

Can the solver take advantage of sparsity?
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Example: geometric programming

The log-sum-exp function (shown left) is convex:

f(x) :=log (Z expxk>

It's a smoothed version of max{xi, ..., xx} (shown right)
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Example: geometric programming

Suppose we have positive decision variables x; > 0, and
constraints of the form (with each ¢; > 0 and aj € R):

g Cjajl X’?-’"S]_

Then by using the substitution y; := log(x;), we have:

log (Z exp(ajo +aiy1 + - + 3jn)/n)> <0

Jj=1

(where ajo :=log ¢;). This is a log-sum-exp function composed
with an affine function (convex!)

14-19



Example: geometric programming

Example: We want to design a box of height h, width w, and
depth d with maximum volume (hwd) subject to the limits:

e total wall area: 2(hw + hd) < Anan

e total floor area: wd < Ag,

e height-width aspect ratio: «
e width-depth aspect ratio: ~y

VANDN
VANNDN
(=%

We can make some of the constraints linear, but not all of them.
This appears to be a nonconvex optimization problem...
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Example: geometric programming

Example: We want to design a box of height h, width w, and
depth d with maximum volume (hwd) subject to the limits:

e total wall area: 2(hw + hd) < Anan
e total floor area: wd < Ag,

e height-width aspect ratio: a < % <p
e width-depth aspect ratio: v < % <4
minimize h lw ld!
h,w,d >0
. .2 2 1
subject to: Awath + mhd <1, EWd <1
ah™tw < 1, %hw‘1 <1
fywd_:l <1, %W_ld <1
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Example: geometric programming

minimize A twld™?!

hw,d >0
subject to: szva”hw 1 ﬁa”hd <1, Alf., wd <1
ah™tw < 1, %hw_1 <1
ywd_1 <1, %W_ld <1

e Define: x :=logh, y :=logw, and z :=logd.

e Express the problem in terms of the new variables x, y, z.
Note: h, w, d are positive but x, y, z are unconstrained.
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Example: geometric programming

e this is a convex model, but it can be simplified!

e most of the constraints are actually linear.
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Example: geometric programming

e This is a convex optimization problem.
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