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Convex sets

A set of points C ⊆ Rn is convex if for all points x , y ∈ C
and any real number 0 ≤ α ≤ 1, we have αx + (1−α)y ∈ C .

� all points in C can see each other.

� can be closed or open (includes
boundary or not), or some
combination where only some
boundary points are included.

� can be bounded or unbounded.
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Convex sets

Intersections preserve convexity:
If I is a collection of convex sets {Ci}i∈I , then
the intersection S =

⋂
i∈I Ci is convex.

proof: Suppose x , y ∈ S and 0 ≤ α ≤ 1. By definition,
x , y ∈ Ci for each i ∈ I. By the convexity of Ci , we must have
αx + (1− α)y ∈ Ci as well. Therefore αx + (1− α)y ∈ S ,
and we are done.

note: The union of convex sets C1 ∪C2 is need not be convex!
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Convex sets

Constraints can be characterized by sets!

� If we define C1 := {x ∈ Rn | Ax ≤ b} then:

Ax ≤ b ⇐⇒ x ∈ C1

� If we define C2 := {x ∈ Rn | Fx = g} then:

Ax ≤ b and Fx = g ⇐⇒ x ∈ C1 ∩ C2

14-4



Convex sets

Example: SOCP

Let C :=
{
x ∈ Rn

∣∣ ‖Ax + b‖ ≤ cTx + d
}

. To prove C is
convex, suppose x , y ∈ C and let z := αx + (1− α)y . Then:

‖Az + b‖ = ‖A(αx + (1− α)y) + b‖
= ‖α(Ax + b) + (1− α)(Ay + b)‖
≤ α‖Ax + b‖+ (1− α)‖Ay + b‖
≤ α(cTx + d) + (1− α)(cTy + d)

= cTz + d

Therefore, ‖Az + b‖ ≤ cTz + d , i.e. C is convex.
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Convex sets

Example: spectrahedron

Let C :=

{
x ∈ R3

∣∣∣∣∣
[
1 x1 x2

x1 1 x3

x2 x3 1

]
� 0

}
. To prove C is

convex, consider the set S :=
{
X ∈ R3×3

∣∣ X = XT � 0
}

Note that S is the PSD cone. It is convex because if we define
Z := αX + (1− α)Y where X ,Y ∈ S and 0 ≤ α ≤ 1, then

wTZw = wT (αX + (1− α)Y )w

= αwTXw + (1− α)wTYw

So if X � 0 and Y � 0, then Z � 0. So S is convex. Now, C
is convex because it’s the intersection of two convex sets: the
PSD cone S and the affine space {X ∈ R3×3 | Xii = 1}.
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Convex functions

� If C ⊆ Rn, a function f : C → R is convex if C is a
convex set and for all x , y ∈ C and 0 ≤ α ≤ 1, we have:

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)

� f is concave if −f is convex.
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Convex and concave functions
Convex functions on R:

� Affine: ax + b.

� Absolute value: |x |.
� Quadratic: ax2 for any a ≥ 0.

� Exponential: ax for any a > 0.

� Powers: xα for x > 0, α ≥ 1 or α ≤ 0.

� Negative entropy: x log x for x > 0.

Concave functions on R:

� Affine: ax + b.

� Quadratic: ax2 for any a ≤ 0.

� Powers: xα for x > 0, 0 ≤ α ≤ 1.

� Logarithm: log x for x > 0.
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Convex and concave functions

Convex functions on Rn:

� Affine: aTx + b.

� Norms: ‖x‖2, ‖x‖1, ‖x‖∞

� Quadratic form: xTQx for any Q � 0

14-9



Building convex functions

1. Nonnegative weighted sum: If f (x) and g(x) are convex
and α, β ≥ 0, then αf (x) + βg(x) is convex.

2. Composition with an affine function:
If f (x) is convex, so is g(x) := f (Ax + b)

3. Pointwise maximum: If f1(x), . . . , fk(x) are convex, then
g(x) := max {f1(x), . . . , fk(x)} is convex.

proof: Let z := αx + (1− α)y as usual.

g(z) = f (Az + b)

= f (α(Ax + b) + (1− α)(Ay + b))

≤ αf (Ax + b) + (1− α)f (Ay + b)

= αg(x) + (1− α)g(y)
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Convex functions vs sets

Level set: If f is a convex function, then the set
of points satisfying f (x) ≤ a is a convex set.

� Converse is false: if all level sets of f are convex, it does
not necessarily imply that f is a convex function!
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Convex functions vs sets

Epigraph: f : Rn → R is a convex function if and only if
the set {(x , t) ∈ Rn+1 | f (x) ≤ t} is convex.
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Convex programs

The standard form for a convex optimization problem:

minimize
x

f0(x)

subject to: fi(x) ≤ 0 for i = 1, . . . , k

Ax = b

x ∈ C

� f0, f1, . . . , fk are convex functions

� C is a convex set
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Convex programs

� Can turn f0(x) into a linear constraint (use epigraph)

� Can characterize constraints using sets.

Minimalist form:

minimize
x∈S

cTx

� S is a convex set
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Key properties and advantages

1. The set of optimal points x? is itself a convex set.

I Proof: If x? and y? are optimal, then we must have
f ? = f0(x

?) = f0(y
?). Also, f ? ≤ f0(z) for any z . Choose

z := αx? + (1− α)y? with 0 ≤ α ≤ 1. By convexity of f0,
f ? ≤ f0(αx

? + (1− α)y?) ≤ αf0(x
?) + (1− α)f0(y

?) = f ?.
Therefore, f0(z) = f ?, i.e. z is also an optimal point.

2. If x is a locally optimal point, then it is globally optimal.

I Follows from the result above. A very powerful fact!

3. Upper an lower bounds available via duality (more later!)

4. Often numerically tractable (not always!)
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Hierarchy of programs

From least general to most general model:

1. LP: linear cost and linear constraints

2. QP: convex quadratic cost and linear constraints

3. QCQP: convex quadratic cost and constraints

4. SOCP: linear cost, second order cone constraints

5. SDP: linear cost, semidefinite constraints

6. CVX: convex cost and constraints

Less general (simpler) models are typically preferable
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Solving convex problems

Simpler models are usually more efficient to solve

Factors affecting solver speed:

� How difficult is it to verify that x ∈ C ?

� How difficult is it to project onto C ?

� How difficult is it to evaluate f (x) ?

� How difficult is it to compute ∇f (x) ?

� Can the solver take advantage of sparsity?
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Example: geometric programming

The log-sum-exp function (shown left) is convex:

f (x) := log

(
n∑

k=1

exp xk

)

It’s a smoothed version of max{x1, . . . , xk} (shown right)
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Example: geometric programming

Suppose we have positive decision variables xi > 0, and
constraints of the form (with each cj > 0 and αjk ∈ R):∑

j=1

cjx
αj1

1 x
αj2

2 · · · x
αjn
n ≤ 1

Then by using the substitution yi := log(xi), we have:

log

(
n∑

j=1

exp (aj0 + aj1y1 + · · ·+ ajnyn)

)
≤ 0

(where aj0 := log cj). This is a log-sum-exp function composed
with an affine function (convex!)
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Example: geometric programming

Example: We want to design a box of height h, width w , and
depth d with maximum volume (hwd) subject to the limits:

� total wall area: 2(hw + hd) ≤ Awall

� total floor area: wd ≤ Aflr

� height-width aspect ratio: α ≤ h
w
≤ β

� width-depth aspect ratio: γ ≤ d
w
≤ δ

We can make some of the constraints linear, but not all of them.
This appears to be a nonconvex optimization problem...
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Example: geometric programming

Example: We want to design a box of height h, width w , and
depth d with maximum volume (hwd) subject to the limits:

� total wall area: 2(hw + hd) ≤ Awall

� total floor area: wd ≤ Aflr

� height-width aspect ratio: α ≤ h
w
≤ β

� width-depth aspect ratio: γ ≤ d
w
≤ δ

minimize
h,w ,d > 0

h−1w−1d−1

subject to: 2
Awall

hw + 2
Awall

hd ≤ 1, 1
Aflr

wd ≤ 1

αh−1w ≤ 1, 1
β
hw−1 ≤ 1

γwd−1 ≤ 1, 1
δ
w−1d ≤ 1
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Example: geometric programming

minimize
h,w ,d > 0

h−1w−1d−1

subject to: 2
Awall

hw + 2
Awall

hd ≤ 1, 1
Aflr

wd ≤ 1

αh−1w ≤ 1, 1
β
hw−1 ≤ 1

γwd−1 ≤ 1, 1
δ
w−1d ≤ 1

� Define: x := log h, y := logw , and z := log d .

� Express the problem in terms of the new variables x , y , z .
Note: h,w , d are positive but x , y , z are unconstrained.
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Example: geometric programming

minimize
x ,y ,z

log(e−x−y−z)

subject to: log(e log(2/Awall)+x+y + e log(2/Awall)+x+z) ≤ 0

log(e log(1/Aflr)+y+z) ≤ 0

log(e logα−x+y ) ≤ 0, log(e− log β+x−y ) ≤ 0

log(e log γ+y−z) ≤ 0, log(e− log δ−y+z) ≤ 0

� this is a convex model, but it can be simplified!

� most of the constraints are actually linear.
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Example: geometric programming

minimize
x ,y ,z

− x − y − z

subject to: log(e log(2/Awall)+x+y + e log(2/Awall)+x+z) ≤ 0

y + z ≤ logAflr

logα ≤ x − y ≤ log β

log γ ≤ z − y ≤ log δ

� This is a convex optimization problem.
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